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Abstract. In recent years containerization has revolutionized cloud 10 
environments, providing a secure, lightweight, standardized way to 11 
package and execute software. Solutions such as Kubernetes enable 12 
orchestration of containers in a cluster, including for the purpose of job 13 
scheduling. Kubernetes is becoming a de facto standard, available at all 14 
major cloud computing providers, and is gaining increased attention from 15 
some WLCG sites. In particular, CERN IT has integrated Kubernetes into 16 
their cloud infrastructure by providing an interface to instantly create 17 
Kubernetes clusters, and the University of Victoria is pursuing an 18 
infrastructure-as-code approach to deploying Kubernetes as a flexible and 19 
resilient platform for running services and delivering resources. 20 
ATLAS has partnered with CERN IT and the University of Victoria to 21 
explore and demonstrate the feasibility of running an ATLAS computing 22 
site directly on Kubernetes, replacing all grid computing services. We have 23 
interfaced ATLAS’ workload submission engine PanDA with Kubernetes, 24 
to directly submit and monitor the status of containerized jobs. We 25 
describe the integration and deployment details, and focus on the lessons 26 
learned from running a wide variety of ATLAS production payloads on 27 
Kubernetes using clusters of several thousand cores at CERN and the Tier 28 
2 computing site in Victoria. 29 

1 Introduction  30 
The ATLAS experiment [1] has a long history of exploiting and adapting to new 31 
technologies in cloud computing [2][3][4][5]. Containerization and Kubernetes are a 32 
continuation of this trend in a new paradigm. The idea to use Kubernetes as a batch system 33 
was conceived during the ATLAS-Google Data Ocean project [6], in which ATLAS 34 
transferred data to Google Cloud Storage and then processed it using Google Compute 35 
Engine virtual machines, according to the traditional Infrastructure-as-a-Service paradigm. 36 
However, containers are a lightweight and more performant alternative to virtual machines, 37 
and Kubernetes provides a robust, feature-rich and fully declarative platform for 38 
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automation and orchestration of containerized applications on any infrastructure. 39 
Furthermore, Kubernetes could be an open-source replacement for traditional WLCG [7] 40 
batch services that is widely adopted across the industry, available on all major cloud 41 
providers, and provides a common interface across cloud providers and sites. The software 42 
stack required at traditional WLCG sites could be considerably simplified by removing (or 43 
encapsulating in containers) HEP-specific middleware. Moreover, since ATLAS has 44 
already migrated to a fully container-based workload [8], it is simpler and more natural to 45 
provide container-native infrastructure at sites, which can further obviate other setup steps 46 
and enables new initiatives such as analysis preservation. 47 

We have explored linking PanDA [9][10], ATLAS’ Workload Management System 48 
(WMS), with Kubernetes through the Harvester [11] resource interface. This contribution 49 
will describe our initial integration model, ideas for improvement, and experience gained 50 
using Kubernetes clusters at CERN and the University of Victoria (UVic). 51 

2 Site perspective: Kubernetes installation 52 
There are many methods and tools for provisioning Kubernetes clusters; a suitable one must 53 
be chosen based on the circumstances and infrastructure at the site. At CERN, computing 54 
resources are managed and provided primarily via one large Openstack cloud, and the 55 
deployment of Kubernetes clusters as a service is integrated into the cloud with Magnum 56 
[12]. At UVic, where a variety of resources are available including bare metal nodes and 57 
several institutional clouds, Kubespray [13] was selected as a portable and flexible solution 58 
for deploying Kubernetes clusters based on the Infrastructure-as-Code paradigm. Following 59 
this approach, a cluster can be deployed or fully rebuilt from scratch within about 15 60 
minutes. 61 
 ATLAS computing jobs rely on CVMFS [14], a distributed read-only file system 62 
widely used in HEP, to access the experiment software. Two approaches have been used to 63 
integrate CVMFS into Kubernetes clusters: at the host level underneath Kubernetes, and at 64 
the application layer inside the cluster. In the host-based approach, a standard CVMFS 65 
client is installed on each node in the cluster, and pods can mount CVMFS repositories 66 
using a hostPath [15] volume. To ensure security, we enable the Kubernetes 67 
PodSecurityPolicy admission controller and enforce a policy that whitelists the path /cvmfs 68 
for read-only access. This approach avoids containerizing the CVMFS client and is suitable 69 
if CVMFS is deemed to be essential infrastructure for a dedicated, purpose-built 70 
Kubernetes cluster for HEP applications, as at UVic. On the other hand, at CERN the csi-71 
cvmfs driver [16] is used to provide pods with access to CVMFS, leveraging the 72 
Kubernetes Container Storage Interface. This method contains CVMFS within the 73 
application layer of the cluster, and is suitable on shared or general-purpose clusters or 74 
commercial clouds, where it is not desirable or possible to modify the nodes in the cluster 75 
with installation of domain-specific software such as CVMFS. 76 
 CVMFS can also be used to optimize the distribution of container images. Using 77 
standard container runtimes, the initial startup time of a typical container is dominated by 78 
pulling the image, even though only about 6% of the image data is actually read [17]. 79 
Containers that provide complex scientific software stacks like ATLAS’ are often 80 
significantly larger (≳1 GB), exacerbating the inefficiency of this approach. At UVic, we 81 
integrated the CVMFS Docker Graph Driver plugin [18][19] into the Kubernetes cluster, so 82 
that Docker loads image data on demand instead of pulling the entire image before starting 83 
a container. In addition to accelerating initial container startup time by a factor of 4, this 84 
saves significant amounts of bandwidth and removes a bottleneck for rapid and dynamic 85 
scalability of the cluster, and integrates well with the host-based deployment of CVMFS. 86 



 

 

 To keep the cluster secure, at UVic we configured Role Based Access Control to allow 87 
only those API actions which are suitable and necessary to run jobs on the cluster, and 88 
applied another PodSecurityPolicy to forbid privileged pods.  To monitor the status and 89 
resource usage of the cluster, we use Prometheus [20], as shown in Figure 1. 90 

 91 

 92 
Fig. 1. Prometheus monitoring showing resource usage for one of the Kubernetes clusters 93 

3 Central perspective: integration with the Workload 94 
Management System through Harvester 95 
Harvester is the new resource-facing service developed by the PanDA team to interface the 96 
central workload management system with distributed computing resources. It is flexible 97 
and extensible, capable of exploiting HPCs, grid sites and clouds. Using new plugins 98 
developed by our ASGC colleagues, Harvester can now also make use of Kubernetes 99 
clusters. 100 

The integration between Harvester and Kubernetes is illustrated in Figure 2. Harvester 101 
uses the Kubernetes Job resource type to control pods. A Job is an abstraction of a pod that 102 
is used to run non-persistent workloads, and ensures that a pod terminates successfully. 103 
This relieves Harvester from having to track the status of individual pods and resubmit ones 104 
that fail if e.g. a node experiences a problem. Harvester defines the specifications (e.g. 105 
memory, CPU) for each Job, and Kubernetes schedules pods on nodes where the required 106 
resources are available. The Harvester credential manager plugin regularly places fresh 107 
X509 proxies in the Kubernetes cluster as secrets [21], which Kubernetes then makes 108 
available to the pods so that pilot jobs can authenticate to grid services. We use the standard 109 
ADC CentOS 7 container image available on Dockerhub [22]. Currently the container 110 
image is statically defined per queue, but we plan to improve this so that it can be 111 
dynamically defined on a per-job basis. Lastly, the pod runs a startup script and launches 112 
the pilot, and the pilot retrieves a job from PanDA and executes it.  113 



 

 

 114 
Fig. 2. Harvester-Kubernetes integration schematic. 115 

4 Results 116 
We have integrated Harvester with several Kubernetes clusters, most notably at CERN and 117 
UVic. 118 

4.1 CERN 119 

The first large-scale test was conducted at CERN in early 2019 on temporarily available 120 
resources. We created a 2000-core cluster consisting of 8-core nodes, and executed 1-core 121 
and 8-core ATLAS production jobs on the cluster. The main findings are depicted in Figure 122 
3. Initially, we used the default Kubernetes scheduling algorithm, which balances load 123 
across nodes in a round-robin manner. This resulted in 1-core jobs being spread among 124 
nodes, blocking 8-core jobs from running on those nodes, thus decreasing the overall 125 
utilization of the cluster as more 1-core jobs run (see red ellipses in top image of Figure 3). 126 
To address this, we tuned the scheduling policy to pack the nodes, preferentially placing 1-127 
core jobs on nodes that are already partially full rather than on empty nodes. This improved 128 
the resource usage of the cluster: there is only one small inefficiency when some nodes 129 
were draining 1-core jobs in order to start 8-core jobs (see grey ellipse in bottom image of 130 
Figure 3), but this is fundamentally unavoidable in any batch system. We are currently 131 
planning to repeat this exercise and potentially set up a permanent cluster at CERN. 132 
 133 
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Fig. 3.  CPU usage on the CERN Kubernetes cluster with the default scheduling algorithm (top) vs 139 
the node-packing policy (bottom). Resources that are unused due to inefficient scheduling are 140 

indicated with red ellipses. Also note the cluster size decreased from 2000 cores to 1000 cores, due to 141 
issues with the csi-cvmfs driver and the infrastructure at CERN, which were addressed at the time. 142 

4.2 University of Victoria 143 
The second exercise was run on clusters at UVic. In order to evaluate and test several 144 
aspects of Kubernetes configuration, a small development cluster of 130 cores was 145 
deployed early on. The observations on this test cluster regarding Kubernetes scheduling 146 
were the same as at CERN (see Figure 4). The insights and solutions gained from the test 147 
cluster influenced the deployment of a larger, permanent T2 cluster with security and 148 
performance enhancements, which has been running stably without interventions since 149 
November 2019 (see Figure 5). 94% of wallclock time on this cluster is consumed by 150 
successful jobs, which will improve further once we address some known issues. 151 
 152 



 

 

 153 
Fig. 4.  Default Kubernetes scheduling vs node packing scheduling on the UVic test cluster 154 

 155 

 156 
Fig. 5. Stable operations of the 500-core UVic production cluster CA-VICTORIA-K8S-T2. The 157 

abrupt brief dips in usage are due to scheduled downtimes for network maintenance external to the 158 
site 159 

4 Conclusions and future work 160 
Kubernetes is the de facto standard for container orchestration, and many WLCG sites have 161 
expressed interest in using it. Kubernetes is usually used to manage applications and 162 
services, but can also be used directly as a batch system. We have demonstrated the use of 163 
Kubernetes, integrated with Harvester, as a native batch cluster for ATLAS production jobs 164 
at multiple sites, thereby significantly reducing the number of layers in the software and 165 
service stack of a traditional WLCG computing site. 166 

The scale we have demonstrated so far is still smaller than ATLAS’ typical grid 167 
usage, and some optimizations still need to be implemented. We are also interested in 168 
evaluating commercial cloud providers, and we have explored cluster federation, but have 169 
not yet found a satisfactory solution for this. 170 

Furthermore, while this approach is very promising, we note that significant effort 171 
remains ahead to develop the maturity of the platform for our needs. The WLCG is a highly 172 
specialized infrastructure that has evolved over the last 15 years. Many implementation 173 
details have yet to be explored, such as accounting, traceability, fairshare-based scheduling, 174 
scaling the authentication and authorization model for wider use, and further adapting the 175 
workload and workflow to the container paradigm. More investigation, development and 176 



 

 

evolution will be needed from the WLCG community to fully benefit from container-native 177 
computing in the Kubernetes ecosystem. 178 
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