

Using Kubernetes as an ATLAS computing site 1

Fernando Harald Barreiro Megino1,*, Jeffrey Ryan Albert2, Frank Berghaus2, Kaushik De1, 2
FaHui Lin1, Danika MacDonell2, Tadashi Maeno3, Ricardo Brito Da Rocha4, Rolf Seuster2, 3
Ryan Paul Taylor2, and Ming-Jyuan Yang5 on behalf of the ATLAS collaboration 4
1University of Texas at Arlington, United States of America 5
2University of Victoria, Canada 6
3Brookhaven National Laboratory, United States of America 7
4European Organization for Nuclear Research, Switzerland 8
5Academia Sinica, Taiwan 9

Abstract. In recent years containerization has revolutionized cloud 10
environments, providing a secure, lightweight, standardized way to 11
package and execute software. Solutions such as Kubernetes enable 12
orchestration of containers in a cluster, including for the purpose of job 13
scheduling. Kubernetes is becoming a de facto standard, available at all 14
major cloud computing providers, and is gaining increased attention from 15
some WLCG sites. In particular, CERN IT has integrated Kubernetes into 16
their cloud infrastructure by providing an interface to instantly create 17
Kubernetes clusters, and the University of Victoria is pursuing an 18
infrastructure-as-code approach to deploying Kubernetes as a flexible and 19
resilient platform for running services and delivering resources. 20
ATLAS has partnered with CERN IT and the University of Victoria to 21
explore and demonstrate the feasibility of running an ATLAS computing 22
site directly on Kubernetes, replacing all grid computing services. We have 23
interfaced ATLAS’ workload submission engine PanDA with Kubernetes, 24
to directly submit and monitor the status of containerized jobs. We 25
describe the integration and deployment details, and focus on the lessons 26
learned from running a wide variety of ATLAS production payloads on 27
Kubernetes using clusters of several thousand cores at CERN and the Tier 28
2 computing site in Victoria. 29

1 Introduction 30
The ATLAS experiment [1] has a long history of exploiting and adapting to new 31
technologies in cloud computing [2][3][4][5]. Containerization and Kubernetes are a 32
continuation of this trend in a new paradigm. The idea to use Kubernetes as a batch system 33
was conceived during the ATLAS-Google Data Ocean project [6], in which ATLAS 34
transferred data to Google Cloud Storage and then processed it using Google Compute 35
Engine virtual machines, according to the traditional Infrastructure-as-a-Service paradigm. 36
However, containers are a lightweight and more performant alternative to virtual machines, 37
and Kubernetes provides a robust, feature-rich and fully declarative platform for 38

* Corresponding author: barreiro [at] uta [dot] edu

automation and orchestration of containerized applications on any infrastructure. 39
Furthermore, Kubernetes could be an open-source replacement for traditional WLCG [7] 40
batch services that is widely adopted across the industry, available on all major cloud 41
providers, and provides a common interface across cloud providers and sites. The software 42
stack required at traditional WLCG sites could be considerably simplified by removing (or 43
encapsulating in containers) HEP-specific middleware. Moreover, since ATLAS has 44
already migrated to a fully container-based workload [8], it is simpler and more natural to 45
provide container-native infrastructure at sites, which can further obviate other setup steps 46
and enables new initiatives such as analysis preservation. 47

We have explored linking PanDA [9][10], ATLAS’ Workload Management System 48
(WMS), with Kubernetes through the Harvester [11] resource interface. This contribution 49
will describe our initial integration model, ideas for improvement, and experience gained 50
using Kubernetes clusters at CERN and the University of Victoria (UVic). 51

2 Site perspective: Kubernetes installation 52
There are many methods and tools for provisioning Kubernetes clusters; a suitable one must 53
be chosen based on the circumstances and infrastructure at the site. At CERN, computing 54
resources are managed and provided primarily via one large Openstack cloud, and the 55
deployment of Kubernetes clusters as a service is integrated into the cloud with Magnum 56
[12]. At UVic, where a variety of resources are available including bare metal nodes and 57
several institutional clouds, Kubespray [13] was selected as a portable and flexible solution 58
for deploying Kubernetes clusters based on the Infrastructure-as-Code paradigm. Following 59
this approach, a cluster can be deployed or fully rebuilt from scratch within about 15 60
minutes. 61
 ATLAS computing jobs rely on CVMFS [14], a distributed read-only file system 62
widely used in HEP, to access the experiment software. Two approaches have been used to 63
integrate CVMFS into Kubernetes clusters: at the host level underneath Kubernetes, and at 64
the application layer inside the cluster. In the host-based approach, a standard CVMFS 65
client is installed on each node in the cluster, and pods can mount CVMFS repositories 66
using a hostPath [15] volume. To ensure security, we enable the Kubernetes 67
PodSecurityPolicy admission controller and enforce a policy that whitelists the path /cvmfs 68
for read-only access. This approach avoids containerizing the CVMFS client and is suitable 69
if CVMFS is deemed to be essential infrastructure for a dedicated, purpose-built 70
Kubernetes cluster for HEP applications, as at UVic. On the other hand, at CERN the csi-71
cvmfs driver [16] is used to provide pods with access to CVMFS, leveraging the 72
Kubernetes Container Storage Interface. This method contains CVMFS within the 73
application layer of the cluster, and is suitable on shared or general-purpose clusters or 74
commercial clouds, where it is not desirable or possible to modify the nodes in the cluster 75
with installation of domain-specific software such as CVMFS. 76
 CVMFS can also be used to optimize the distribution of container images. Using 77
standard container runtimes, the initial startup time of a typical container is dominated by 78
pulling the image, even though only about 6% of the image data is actually read [17]. 79
Containers that provide complex scientific software stacks like ATLAS’ are often 80
significantly larger (≳1 GB), exacerbating the inefficiency of this approach. At UVic, we 81
integrated the CVMFS Docker Graph Driver plugin [18][19] into the Kubernetes cluster, so 82
that Docker loads image data on demand instead of pulling the entire image before starting 83
a container. In addition to accelerating initial container startup time by a factor of 4, this 84
saves significant amounts of bandwidth and removes a bottleneck for rapid and dynamic 85
scalability of the cluster, and integrates well with the host-based deployment of CVMFS. 86

 To keep the cluster secure, at UVic we configured Role Based Access Control to allow 87
only those API actions which are suitable and necessary to run jobs on the cluster, and 88
applied another PodSecurityPolicy to forbid privileged pods. To monitor the status and 89
resource usage of the cluster, we use Prometheus [20], as shown in Figure 1. 90

 91

 92
Fig. 1. Prometheus monitoring showing resource usage for one of the Kubernetes clusters 93

3 Central perspective: integration with the Workload 94
Management System through Harvester 95
Harvester is the new resource-facing service developed by the PanDA team to interface the 96
central workload management system with distributed computing resources. It is flexible 97
and extensible, capable of exploiting HPCs, grid sites and clouds. Using new plugins 98
developed by our ASGC colleagues, Harvester can now also make use of Kubernetes 99
clusters. 100

The integration between Harvester and Kubernetes is illustrated in Figure 2. Harvester 101
uses the Kubernetes Job resource type to control pods. A Job is an abstraction of a pod that 102
is used to run non-persistent workloads, and ensures that a pod terminates successfully. 103
This relieves Harvester from having to track the status of individual pods and resubmit ones 104
that fail if e.g. a node experiences a problem. Harvester defines the specifications (e.g. 105
memory, CPU) for each Job, and Kubernetes schedules pods on nodes where the required 106
resources are available. The Harvester credential manager plugin regularly places fresh 107
X509 proxies in the Kubernetes cluster as secrets [21], which Kubernetes then makes 108
available to the pods so that pilot jobs can authenticate to grid services. We use the standard 109
ADC CentOS 7 container image available on Dockerhub [22]. Currently the container 110
image is statically defined per queue, but we plan to improve this so that it can be 111
dynamically defined on a per-job basis. Lastly, the pod runs a startup script and launches 112
the pilot, and the pilot retrieves a job from PanDA and executes it. 113

 114
Fig. 2. Harvester-Kubernetes integration schematic. 115

4 Results 116
We have integrated Harvester with several Kubernetes clusters, most notably at CERN and 117
UVic. 118

4.1 CERN 119

The first large-scale test was conducted at CERN in early 2019 on temporarily available 120
resources. We created a 2000-core cluster consisting of 8-core nodes, and executed 1-core 121
and 8-core ATLAS production jobs on the cluster. The main findings are depicted in Figure 122
3. Initially, we used the default Kubernetes scheduling algorithm, which balances load 123
across nodes in a round-robin manner. This resulted in 1-core jobs being spread among 124
nodes, blocking 8-core jobs from running on those nodes, thus decreasing the overall 125
utilization of the cluster as more 1-core jobs run (see red ellipses in top image of Figure 3). 126
To address this, we tuned the scheduling policy to pack the nodes, preferentially placing 1-127
core jobs on nodes that are already partially full rather than on empty nodes. This improved 128
the resource usage of the cluster: there is only one small inefficiency when some nodes 129
were draining 1-core jobs in order to start 8-core jobs (see grey ellipse in bottom image of 130
Figure 3), but this is fundamentally unavoidable in any batch system. We are currently 131
planning to repeat this exercise and potentially set up a permanent cluster at CERN. 132
 133
 134
 135

 136

 137
 138

Fig. 3. CPU usage on the CERN Kubernetes cluster with the default scheduling algorithm (top) vs 139
the node-packing policy (bottom). Resources that are unused due to inefficient scheduling are 140

indicated with red ellipses. Also note the cluster size decreased from 2000 cores to 1000 cores, due to 141
issues with the csi-cvmfs driver and the infrastructure at CERN, which were addressed at the time. 142

4.2 University of Victoria 143
The second exercise was run on clusters at UVic. In order to evaluate and test several 144
aspects of Kubernetes configuration, a small development cluster of 130 cores was 145
deployed early on. The observations on this test cluster regarding Kubernetes scheduling 146
were the same as at CERN (see Figure 4). The insights and solutions gained from the test 147
cluster influenced the deployment of a larger, permanent T2 cluster with security and 148
performance enhancements, which has been running stably without interventions since 149
November 2019 (see Figure 5). 94% of wallclock time on this cluster is consumed by 150
successful jobs, which will improve further once we address some known issues. 151
 152

 153
Fig. 4. Default Kubernetes scheduling vs node packing scheduling on the UVic test cluster 154

 155

 156
Fig. 5. Stable operations of the 500-core UVic production cluster CA-VICTORIA-K8S-T2. The 157

abrupt brief dips in usage are due to scheduled downtimes for network maintenance external to the 158
site 159

4 Conclusions and future work 160
Kubernetes is the de facto standard for container orchestration, and many WLCG sites have 161
expressed interest in using it. Kubernetes is usually used to manage applications and 162
services, but can also be used directly as a batch system. We have demonstrated the use of 163
Kubernetes, integrated with Harvester, as a native batch cluster for ATLAS production jobs 164
at multiple sites, thereby significantly reducing the number of layers in the software and 165
service stack of a traditional WLCG computing site. 166

The scale we have demonstrated so far is still smaller than ATLAS’ typical grid 167
usage, and some optimizations still need to be implemented. We are also interested in 168
evaluating commercial cloud providers, and we have explored cluster federation, but have 169
not yet found a satisfactory solution for this. 170

Furthermore, while this approach is very promising, we note that significant effort 171
remains ahead to develop the maturity of the platform for our needs. The WLCG is a highly 172
specialized infrastructure that has evolved over the last 15 years. Many implementation 173
details have yet to be explored, such as accounting, traceability, fairshare-based scheduling, 174
scaling the authentication and authorization model for wider use, and further adapting the 175
workload and workflow to the container paradigm. More investigation, development and 176

evolution will be needed from the WLCG community to fully benefit from container-native 177
computing in the Kubernetes ecosystem. 178

Acknowledgements 179
This research was enabled in part by support provided by Compute Canada 180
(www.computecanada.ca), National Science Foundation (www.nsf.gov), US Department of 181
Energy (www.energy.gov/) and WestGrid (westgrid.ca). 182

References 183
1. The ATLAS Collaboration, J. Inst. 3 S08003 (2008) doi:10.1088/1748-184

0221/3/08/S08003 185
2. F. Barreiro Megino et al., J. Phys. Conf. Ser. 396 032011 (2012) doi:10.1088/1742-186

6596/396/3/032011 187
3. S. Panitkin et al., J. Phys. Conf. Ser. 513 062037 (2014) doi:10.1088/1742-188

6596/513/6/062037 189
4. R. P. Taylor et al., J. Phys. Conf. Ser. 664 022038 (2015) doi:10.1088/1742-190

6596/664/2/022038 191
5. R. P. Taylor et al., J. Phys. Conf. Ser. 898 052008 (2017) doi:10.1088/1742-192

6596/898/5/052008 193
6. M. Barisits et al. on behalf of the ATLAS Collaboration, EPJ Web Conf. 214 04020 194

(2019) doi:10.1051/epjconf/201921404020 195
7. LHC Computing Grid: Technical Design Report, document LCG-TDR-001, CERN-196

LHCC-2005-024 (The LCG TDR Editorial Board) (2005) 197
8. A. Forti et al., Containers usage on the ATLAS grid infrastructure, 23rd International 198

Conference on Computing in High Energy and Nuclear Physics 2018, Sofia, Bulgaria 199
9. P. Nilsson et al. on behalf of the ATLAS Collaboration, J. Phys. Conf. Ser. 513 032071 200

(2014) doi:10.1088/1742-6596/513/3/032071 201
10. T. Maeno et al., J. Phys. Conf. Ser. 898 052002 (2017) 202
11. T. Maeno et al., EPJ Web Conf., 214 (2019) 03030 203
12. OpenStack Magnum https://docs.openstack.org/magnum/latest/ 204
13. Kubespray https://kubespray.io/ 205
14. J. Blomer et al., J. Phys.: Conf. Ser. 898 062031 (2017) 206
15. Kubernetes hostPath volumes 207

 https://kubernetes.io/docs/concepts/storage/volumes/#hostpath 208
16. Kubernetes csi-cvmfs driver 209

https://clouddocs.web.cern.ch/containers/tutorials/cvmfs.html 210
17. T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, 14th 211

USENIX Conference on File and Storage Technologies 194430 (2016) 212
18. N. Hardi, J. Blomer, G. Ganis, R. Popescu, J. Phys. Conf. Ser. 1085 032019 (2018) 213

doi:10.1088/1742-6596/1085/3/032019 214
19. S. Mosciatti (2018) Efficient container distribution at global scale. Polytechnic 215

University of Milan, Milan, Italy. https://hdl.handle.net/10589/144807 216
20. Prometheus https://prometheus.io/ 217

21. Kubernetes Secrets https://kubernetes.io/docs/concepts/configuration/secret/ 218
22. ATLAS Distributed Computing CentOS7 image 219

https://hub.docker.com/r/atlasadc/atlas-grid-centos7 220

